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ABSTRACT

A van der Pol relaxation oscillator that is subjected to external
sinusoidal forcing can exhibit stable aﬁd unétable periodic and almost
periodic responses. For some forcing aﬁplitudes it even happens that
two stable subharmonics having different periods may coexist. We in-
vestigate here the stable responses of such forced ;scillators. By
numerically combuting the rotation number of stable oscillations for
various values of the forcing amplitude and oscillator tuning, we
obtain descriptions of régions of éhase locking, successive bifurcation
of stable subharmonic and almost periodic oscillations, and overlap

regions where two distinct stable oscillations can coexist.
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0. Introduction.
The van der Pol equation is typical of components arising in a
wide variety of applications ranging from electrical circuitry to phy-

siology. In this paper, we study it in the form
2 2 2 g
du/dt™ + k(u =~1)du/dt + u = ﬂk B cos(pt +

where k is the tuning parameter, and B./4 and ¢ are the (normalized)
forcing amplitu&e, frequency and phase, respectively.'

Periodic solutions of this equation, and their stability properties
have been extensively studied in the past fifty years. The regular case
(k<<1) has been studied with averaging methods by Bogoliuboff, et.al.[1],
and by analytic and topological methods by Cartwright and Littlewood and
others[2,3].

The singular case (k>>1) is more difficult to analyze. Early
studies of the free problem (B = 0) provided descriptions of the relax-
ation oscillation and its period[4]. The period of the free oscillation
vas abwn. to be

T=@G-210g2) k + 7.0t k13 - 1.325 + o(log k/ k) i

for k >>1. Later studies gave methods for approximating the relaxation ‘
oscillation by complicated combinations of matched asymptotic expansions 1
and averaging procedures [4,5]. " :

The forced singular problem (k >> 1, B ¥ 0) exhibits remarkable 1

solutions, and it serves as the main point of the investigations by

Carturight and Littlewood[3,6-10). A similar problem, but with

u’ = 1 replaced by otgm(uz - 1) was studicd by Levinson [11)




b :
by patching together explicit solutions. These investigations showed that
there are parameter values among O < B < 2/3, k >> 1, for which two
stable periodic sélutions coexist. These are.distinct subharmonics having
different periods, say 2n + 1 times the forcing period 27(4‘, One
striking tmp}ication of this was pointed out by Levinson: For fixed
B, k and M* in such an overlap region, there are two ;table subharmonics
having periods Ay - (2n - 1)2C/p and y = (2n + 1)2 Wllb‘, respectively.
Given any sequence of zeios and ones, let marks be made on the time axis
using lengths 2, aﬁd 11, successively as prescribed by the sequence. Then
there is a solut-=ion of the equation having zeros near and only near
the marks. Thus, there is a kind of randomness exhibited by the 'solution
set. These solutions will be dileussed later.

Two other studies of the forced singular case that are related to
our investigation were made by Hayashi[12] and in [13]. 1In the first,
a numerical édlculation was performed on an analog device for fixed k.
Subharmonics having periods 2,3,4,5 and 6 times the forcing period were
found for various vnlqcs of B and s, and an overlap region for solutions
having peéioda one and three times the forcing period was £;und. In the
second, a formal construction was used to derive necessary conditions
for the existence of certain subharmonics. It was shown that conditions
for various subharmonics could be satisfied simultaneously by some values
of B and k.

Our methods are described in section 1 of this paper, and in section 2,

the results of our calculations are presented.
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. BEST AVAILABLE copy

The model is studied here for the parameters

1. Methods.
satisfying
a=0,M4=1,0<B< .8, 0<1l/k<.2.

The choice g = 0 of course ig unimportant since this can always be

€;omplished by a translation of the time variable. Our choice of u=1

was made in oréer to more easily relate our results go those of Cart-

wright, Littlewood and Levinson. Tﬁe calculations carried out by Hayashi

suggest that similar results to ours would be obtained for any fixed k.
vay Ler Fel egvivalent

Setting €= 1/k and integrating the,equation once leads to the,first

order system

dy/at = (1/€)(y - voI3 - v)
dv/dt = gy - Bcos t

It is this system that we study here for 0 < B < .8, 0 < €< .2.
Solutions of this system for various initial data (y(0),v(0)) define

a transformation of the (y,v)-plane at t = 0 to the (y,v)-plane at t = 2T,
P : (y(0),v(0)) —» (y(2m),v(2w)).

This is the Poincaré mapping, and invariant sets for this mapping can
describe periodic and almost periodic solutions of the equation. For
example, a solution(subharmonic)having period 3°'2¢ will define a three

point invariant set for P. 1f this subharmonic is stable, then a
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neighborhood of any one of these points will approach the point under
iterations of P3 = PePeP,

A given oscillatory solution can be descfibed further by its rotation

number. This is defined by

P = lm (1/2a%) | ars(P"f) |

for any point f = (yo,vo.). lying on f:he invariant set of P corresponding
to the solution. The notation arg(yo,vo) denotes thg positive angle
ti\is vector makes with the positive y-axis. For example, if the oscill-
ation is a subharmonic having period 3:2¢C, then its rotation number can
be either 1/3 or 2/3. 1In seneral,‘ the rotation mxmbef of an oscillatory
solution can be rational or irrational. When 'P is rational, the denomin-
ator gives the period. Also, when f is rational, there may be several
~ distinct solutions having that retation number. For example, if f = 1/3,
there is a three point set that is invariant under the Poincaré map,
and through each one there is a solution having f = 1/3.

i‘he :rotation number was first introduced by Poincaré, .and it has
been used and studied in many contexts.since then. It is known that
the rotation number of a stable oscillation depends continuously on
the parameters in the problem, and so it is constant over a neighborhood
of parameter values. In our problem there are both stable and unstable
oscillations present for most of the parameter values. Therefore, the
system cannot be characterized by a single rotation number. Even when
attention is restricted to stable oscillations, there neced not be a

unique rotation number since two stable oscillations can coexist.
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Our methods consist of fixing valueé for B and £, then selecting an

initial point (y(0),v(0)). Next, we solve (1) using an implementati on of

Gear's code due to Hindmarsh[15]. This is a variable step, variable order

numerical integrator. When this solution equilibrates(usually to six or

seven place accuracy over several periods), its rotatgon number is easily

calculated. Two techniques were used for selecting initial data. First,

we allow £ and B to change systematically along a straight line in the

(B,E)-plane, with each new calculation using the last value from the previous

one as an initial point. 1In this way, overlap regions were determined. .

by passing over them in two different directions. The otﬁez{ technique

involved fixing B and €, and then calculating the rotation number for

a sequence of initial data lying near the relaxation oscillation of

the free problem.

2. Numerical e§aluation of f and its implications.

Both kinds oé qal culations des'c_ribed in section 1 were performed
for 0 <B< .8 and 0 < £ < .2. The results of these calculations are
summarized in Figure 1 by a contour mapping of f as a funct:i'bn of Band £.

(FIGURE 1)

The free problem (B = 0) is described along the line B = 0 in
Figure 1. Since the forcing frequency is 1 in the forced problem, the
uﬁdidatu for solutions that develop into subharmonics are those free
oscillations whose periods are integer multiples of 27C. These occur
at f values indicated in Table 1.

(TABLE 1)

These are also indicated on Figure 1, and we see that appropriate sub-
harmonics are observed near these points for B near zero. The values in

Tazble 1 come from evaluation of the first few terms in T given in section O.
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For positive values of B, we see that there are regions over which
f is constant. The profile of f for B= .1, .01 < £< .1, is shown in
Figure 2.

(FIGURE 2)

This indicates that f is a monotonically increasing function of € which

is constant over intervals. Such behavior is known in other problems
[16], and it illustrates the well known phenomenon of phase locking, where
the frequency of the response remains constant when parameters are changed
slightly. :

The profile of f for B = .h75 is more complicat-:ed since discontin-
uities in foccur. Figure 3 indicates that f is continuous for g€ > .0k,
but that it is double valued over intervals below that.

(FIGURE 3)

The overlap intervals describe parameter values where there is not a unique
stable response. The implications of overlaps will be discussed later.

We did not attempt to calculate irrational values of f However,
they presu ably occur, a.nd they correspond to almost periodic solutions
of the eqﬁatio_n that have quite small parameter sets over wich they are

stable.

An indication of the behavior of unstable solutions is given by
the behavior of stable solutions near where they lose stability. 1In
Figure 4, five examples are presented which show this. B is fixed at
B = .475, and € is decreased through the region where f0 = 1/3. A stable
solution having period 3-2f7 is plotted for each of several g values by
projecting the solution back onto the (y,v)-plane.

(FIGURE k)

These show that as € decreases, the solution comes successively closer

to the free relaxation oscillation, at the same time layering itself over

gt 39 RN




3. Summary

The main motivation for this investigation is the study of stable
oscillations in the forced van der Pol equation?}uzgis is a difficult
problem to study analytically) we have calculated the rotation numbers
of the stable responses of a van der Pol relaxation oscillator to sin-
usoidal forcing. The results suggest that the rotation number (f)

defines a continuous, but piece-wise constant. surface except in overlap

regions where it is double valued, having what resemble folds.

} The parameter
ranges where f is single valued illustrate the phenomenon of phase locking;
i.e., the response frequency is constant over a neighborhood of parameter
values. Various phase locking regions of subharmonic and ultra-sub-
harmonic responses are described by these calculations. :

Calculations done near the start of ‘overlaps show that the surface
steepens as the overlap is approached. While the overlap regions might
be described by simple folds in the surface with the upper and lower
branches being stable, our methods give no indication of the actual
behavior of the unstable solutions having rotation numbers between the
two stable ones. In addition, there may be more than two stable oscilla-
tions having distinct f values coexisting, although we were able to
detect only two stable responses in any overlap region. For example,
stable solutions having high periods(> 100°2% ) and small domains of
attraction would be beyond our calculations. Certainly, if the form
of van der Pol's equation were modified, as in studies of multi-vibrators,

then coexistence of more than two stable oscillations would be expected.
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The overlap regions are quite interesting. Since stable oscillations
having different frequencies coexist near the free relaxation oscillation,
their domains of attraction must be intertwined.in a very complicated way.
In particular, the system's behavior is very sensitive to small pertur-
bations. Presumably the random behavior suggested by Levinson is to
be found among the solution set having initial values'on the boundary of
the domains of attraction.

Finally, our calculations are consistent with the results established
by Cartwright and Littlewood. Their results can be demonstrated in
Figure 1 by fixing £ at a small value, say .01, and then observing the
‘f values as B changes. They show that for sufficiently small €, the
interval 0 < B < .8 can be broken up into three disjoint sets. One con--
sists of intervals over which‘f is single valued, aﬁother consists of
intervals over which)’ is double valued, and the third is a small set
that is ignored. The intervals of single and double values of}’ are
clear in Figure 1, and'the remainder consists of sets wherejo takes on
irrational values.

. Say

From another point of view, the profile of the)’ surfacg’for B
fixed and € decr’easing,cnn be interpreted as a bifurcation diagram where
only stable branches are plotted. .For example, in Figure 2 as & decreases
from 0.1, the solution having period 3:2R loses its stablility with the
appearence of other oscillations. Presumably the periodic solution is
still present for smaller values of §, but it is no longer stable.
Therefore, if Figure 2 were viewed as being a bifurcation diagram, then
each point on the graph should be extended as a straight line to €= O.
1If the unstable branches are included, then the diagram will be solid above

the lowest stable value since periodic solutions presumably persist for

decreasing €.
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Other interesting oscillators can be constructed using information
compliled here. For example, if B is allowed to vary slowly back and
forth across an over lap region, then the solution would hawe one‘f value
until the overlap boundary is crossed, when it would equilibrate rapidly
to a solution having the othet‘j’V@lue. Then as B reverses, the opposite
happens. On the other hand, if B and £ vary slowly in other regions,
the solution could appear to be chaotic.

Some indication of the unstable solutions was obtained here from
calculated solutions for parameter values near where they lose their
stability. This indicates that the solutions are layered near the free
relaxation osé¢illation, suggesting an onioq skin configuration reminiscent
of that found in [14] for a two dimensional strange attractor.

We have not attempted in this paper to rigorously derive any of
the results suggested-by our calculations. However, the calculations do
give an indication of the nature of stable responses in this system,

which pose difficult analytic problems.

S




TABLE 1

f ~ Protosubharmonics: Free oscillations(B = 0) having period 27¢n.
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